群论在人工智能应用-群论在人工智能应用中的应用
大家好,今天小编关注到一个比较有意思的话题,就是关于群论在人工智能应用的问题,于是小编就整理了2个相关介绍群论在人工智能应用的解答,让我们一起看看吧。
什么是连续数学和离散数学?两者什么区别?求说简单点,深奥听不懂?
连续(Continuity)的概念最早出现于数学分析,后被推广到点集拓扑中。
***设f:X->Y是一个拓扑空间之间的映射,如果f满足下面条件,就称f是连续的:对任何Y上的开集U, U在f下的原像f^(-1)(U)必是X上的开集。
若只考虑实变函数,那么要是对于一定区间上的任意一点,函数本身有定义,且其左极限与右极限均存在且相等,则称函数在这一区间上是连续的。
分为左连续和右连续。在区间每一点都连续的函数,叫做函数在该区间的连续函数。
离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。离散数学在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
二者的区别:
离散数学是相对连续数学而言的,主要以研究对象是否具有连续性为区分点。从这个角度来说,通常的微积分就算是连续数学。但离散数学这个词和高等数学一样,现在更多的是用来指代大学非数学专业的一门数学课程名称,它的内容主要涉及数论、图论、最优化、群论等问题,通常是计算机类专业的必修课程。
连续数学是相对非随机数学而言的,主要以研究对象是否具有随机性为区分点。随机性是不确定性的一种,所以还有个更广的分类叫确定性数学与不确定性数学,后者还包括一种称为模糊性的不确定性。涉及随机性的都可以归到随机数学一类,比如概率论、随机过程、随机微分方程等,其它如微积分、线性代数之类就都算是非随机数学了。
人尽皆知的数学家?
说实话我对数学并不是很擅长,但是看到这个问题我脑海中第一个想到的就是自学成材的天才数学家,中国近代数学的开创人——华罗庚 在众多数学家里华罗庚无疑是天分最为突出的一位,华罗庚通过自学而成为世界级的数学家,他是解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、 偏微分方程、高维数值积分等广泛数学领域的中都作出卓越贡献。
华罗庚是人尽皆知的数学家,是中国现代数学之父和国际数学大师。华罗庚的名声不只是在中国,在外国也是十分出名的。华罗庚是中国解析数论,几何学的创始人。在函数方面的研究贡献也是属于开拓者的级别。在数学方面的成就令人惊叹。
美国的数学家贝特曼曾说过华罗庚就像是中国的爱因斯坦,很有资格成为全世界所有科学院的院士。可见华罗庚在国际上的影响有多大。华罗庚小时候就对数学十分感兴趣,甚至很多对于数学的认识都是通过自己学习知道的。
1.华罗庚(1910年11月12日—1985年6月12日),中国科学院院士、数学家。
华罗庚主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究;并解决了高斯完整三角和的估计难题、华林和塔里问题改进、一维射影几何基本定理证明、近代数论方法应用研究等;被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一;国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。
2.陈景润
陈景润(1933年5月22日~1996年3月19日),中国著名数学家。
主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。20世纪50年代对高斯圆内格点、球内格点、塔里问题与华林问题作了重要改进。60年代以来对筛法及其有关重要问题作了深入研究,1966年5月证明了命题“1+2”,将200多年来人们未能解决的哥德巴赫猜想的证明大大推进了一步,这一结果被国际上誉为“陈氏定理”,其后他又对此作了改进。
1966年5月,发表了他的论文《表大偶数为一个素数及一个不超过二个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”。
到此,以上就是小编对于群论在人工智能应用的问题就介绍到这了,希望介绍关于群论在人工智能应用的2点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.bfgfmw.com/post/18556.html